GEOS 425: Remote Sensing (T)
Prerequisites: MATH 125 or higher MATH (except MATH 160), GEOS 125, or permission of the instructor.
Three hours lecture; three hours laboratory (4)
The course provides students the opportunity to (1) learn theory and practice of contemporary remote sensing products (aerial photographs, digital orthophotos, airborne and satellite sensor platforms and their images), (2) learn and experiment with the technologies utilized in the analysis, image processing, and interpretation of these products, and (3) learn the use of the products in analog and digital format for other geographic technologies.
Note(s): Applied Learning designated course.
Detailed Description of Content of Course
Content
1. Introduction and Overview of Remote Sensing and Image Processing
2. Low- and Mid-level Aerial Photography
a. Airphoto Examination and Stereoscopic Pairs
b. Format of Aerial Photographs
c. Cameras, Films, and Filters
d. Orientation and Image Type
e. Acquisition of Aerial Photographs
f. Scale Determination
g. Height, Distance, and Area Determination
h. Interpretation of visible Cultural and Physical Features
i. Determination of Correspondence between Maps and Air Photos
3. Digital Orthophotography
a. Uses and Scales of Digital Orthophotographs
b. Acquisition of Digital Orthophotography
i. Establishment of Ground Control for Flight lines (GPS)
ii. Post-flight processing to Digital Formats
c. Interpretation and Use of Digital Orthophotography
i. Paper Prints
ii. Digital Formats
iii. Compatibility Issues with Digital Processing and GIS Programs
4. High-Level Electro-Optical Sensor Platforms
a. Analog and digital products and their use
b. Geo-referencing of high-level photographs
5. Electro-Magnetic Spectrum Sensor Platforms (Multispectral Scanners)
a. Airborne and Satellite Sensor Platforms
i. Reasons for Remotely sensed Digital Image Collection
ii. The Earth Resources Analysis Perspective
b. Resolution Considerations: Spectral, Spatial, and Temporal
i.Types of Resolutions for Civilian Use
ii. Data Volume and Handling Considerations
c. Image Processing System Considerations
d. Digital Image Processing
i. Initial Statistics Extraction
ii. The Histogram and its Significance to Digital Image Processing
of Remote Sensor Data
e. Display Alternatives
i. Gray-scale images
ii. Pseudo-Color Display of Image Bands of Image Bands
f. Image Pre-Processing
i. Radiometric Correction
ii. Geometric Correction (Rectification Processes)
g. Image Enhancement Techniques
i. Transects
ii. Contrast Enhancements: Linear and Non-Linear Enhancements
iii. Rationing of Bands
iv. Spatial Filtering: Low- and High-Frequency Filtering
v. Edge Enhancements
vi. Spatial Transformations: Principal Components Analysis; Vegetation
Indices; Texture Transformations
h. Thematic Information Extraction from Digital Images
i. Supervised and Unsupervised Classifications
ii. Land Use Classification Accuracy Assessment
g. Change Detection Algorithms
i. Image Differencing
ii. Band Ratioing
6. Remote Sensor Data Processing Products as Input into other Geographic Technologies
a. Geographic Technologies utilizing Remote Sensor Data Processing Products
i. Analog Maps
ii. Digital Mapping Programs
iii. Geographic Information Systems
b. Data Format Considerations
c. Data Compatibility Issues (Projections, Datums)
7. Summary: Current and Anticipated Future Directions for Remote Sensing and Image Processing
Detailed Description of Conduct of Course
The course will include hands-on exercises in remote sensing and analysis of remotely-sensed data. The course can be taught through class room lectures and with accompanying labs, as an asynchronous online class, or through synchronous class room lectures and labs online or on-campus. The class will primarily involve hands-on experience on the form of exercises that involve studying a geographic problem and drawing valid conclusions informed by data acquired from remote sensing equipment.
Goals and Objectives of the Course
The course provides students with an opportunity to gain an appreciation of and practical experience in working with remote sensor data and image processing techniques. Students will (1) develop a comprehension of the theories used in remote sensing and digital image processing, (2) become proficient in the utilization of the techniques and the technologies of remote sensing and digital image processing, and (3) learn to apply these techniques and technologies in the context to selected exercises.
Assessment Measures
Assessment will include projects and exercises. Exams/quizzes may be conducted.
Other Course Information
None
Approval and Review
April 27, 2017
February, 2010
September 2005 Reviewed Bernd H. Kuennecke
March 01, 2021